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Abstract. We design an algorithm, called the fluid synchronization algorithm (FSA), for the job shop
scheduling problem with the objective of minimizing the makespan. We round an optimal solution to a fluid
relaxation, in which we replace discrete jobs with the flow of a continuous fluid, and use ideas from fair
queueing in the area of communication networks in order to ensure that the discrete schedule is close to the
one implied by the fluid relaxation. FSA produces a schedule with makespan at most Crnax + (7 +2) Pmax Jmax.
where Cmax is the lower bound provided by the fluid relaxation, 7 is the number of distinct job types, Jmax is
the maximum number of stages of any job-type, and Pmax is the maximum processing time over all tasks. We
report computational results based on all benchmark instances chosen from the OR library when N jobs from
each job-type are present. The results suggest that FSA has a relative error of about 10% for N = 10, 1%
for N = 100, 0.01% for N = 1000. In comparison to eight different dispatch rules that have similar running
times as FSA, FSA clearly dominates them. In comparison to the shifting bottleneck heuristic whose running
time and memory requirements are several orders of magnitude larger than FSA, the shifting bottleneck
heuristic produces better schedules for small N (up to 10), but fails to provide a solution for larger values
of N.

1. Introduction

The job shop scheduling problem is a central A/P-hard problem in Operations Research
and Computer Science that has been studied extensively from a variety of perspectives
in the last thirty years, and is defined as follows: We are interested in scheduling a set of
I job types on J machines. Job type i consists of J; stages (also referred to as “tasks”),
each of which must be completed on a particular machine '. The pair (i, k) represents
the k™ stage of the i™ job type, and has processing time p; ;. Suppose that we have n;
jobs of type i. Our objective is to find a schedule that minimizes the makespan, which
is defined as the maximum completion time of the jobs; in the standard scheduling
notation, this problem is denoted as J||Cmax. An alternative objective is to minimize
the weighted completion time or more generally to minimize the total holding cost. We
address this objective in Bertsimas, Gamarnik and Sethuraman [4].
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L All of our results remain valid if we allow multiple stages of a job to be processed by the same machine;
this model is referred to as a “re-entrant” job shop in the literature.
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We impose the following restrictions on the schedule.

1. The schedule must be non-preemptive. That is, once a machine begins processing
a stage of a job, it must complete that stage before doing anything else.

2. Each machine may work on at most one task at any given time.

3. The stages of each job must be completed in order.

The classical job shop scheduling problem involves exactly one job from each type,
i.e., the initial vector of job types is (1,1, ..., 1). The job shop scheduling problem
is notoriously difficult to solve exactly, even if the sizes of the instances are relatively
small. As an example, a specific instance involving 10 machines and 10 jobs posed in
a book by Muth and Thompson [19] in 1963 remained unsolved for over 20 years until
solved by Carlier and Pinson [5] in 1985.

Our overall approach for the problem draws on ideas from two distinct communities,
and is inspired by the recent paper of Bertsimas and Gamarnik [3] who first introduced
the idea of rounding a fluid relaxation to the job shop scheduling problem.

First, we consider a relaxation for the job shop scheduling problem called the fluid
relaxation, in which we replace discrete jobs with the flow of a continuous fluid. The mo-
tivation for this approach comes from optimal control of multiclass queueing networks,
which are stochastic and dynamic generalizations of job shops. For the makespan objec-
tive, the optimal solution of the fluid control problem can be computed in closed form
and provides a lower bound Cpax to the job shop scheduling problem; see Weiss [27],
Bertsimas and Gamarnik [3].

Our second idea is motivated by the literature on fair queueing, which addresses
the question of emulating a given head-of-the-line processor sharing discipline without
preempting jobs. Processor sharing disciplines were originally proposed as an idealiza-
tion of time-sharing in computer systems. In a time-sharing discipline, the processor
cycles through the jobs, giving each job a small quantum of service; processor-sharing
is the discipline obtained as the quantum length approaches zero. Processor sharing
disciplines are attractive from the point of view of congestion control in large scale
networks because of their inherent fairness. For this reason, the question of emulating
a given processor sharing discipline using a non-preemptive discipline (while retaining
its attractive features) has received a lot of attention in the flow control literature; sev-
eral simple and elegant schemes, classified under the generic name of fair queueing,
have been proposed (see Demers, Keshav and Shenker [6], Greenberg and Madras [10],
Parekh and Gallager [20,21]). Of particular relevance to our work is a fair queueing
discipline called fair queueing based on start times (FQS). Under this discipline, when-
ever a scheduling decision is to be made, the job selected is the one that starts earliest
in the underlying processor sharing discipline. A comprehensive review of related work
appears in the survey of Zhang [28].

Our algorithm can be viewed as a natural outcome of combining these two ideas. We
use appropriate fluid relaxations to compute the underlying processor sharing discipline
(i.e., the rate at which the machines work on various job classes), and then draw on ideas
from the fair queueing literature. An important difficulty that must be addressed is that
the fluid relaxation approximates jobs by a “continuous fluid,” whereas in reality, jobs
are “discrete entities.” This necessitates a more careful definition of “start times,” while
attempting to use a discipline like FQS.
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In recent years, considerable progress has been made in the deterministic scheduling
community in providing approximation algorithms for scheduling problems based on
linear programming relaxations. In this framework, a natural linear programming re-
laxation of the scheduling problem is solved first, which results in LP start/completion
times for each job. A typical heuristic is to then schedule the jobs in the order of their
LP start times or LP completion times. For a review of this approach, we refer the
readers to the papers by Hall [11], Karger, Stein and Wein [16], Hall, Schulz, Shmoys
and Wein [12], and the references therein. As we shall see, our scheduling algorithm
can be viewed as a generalization of this idea to a dynamic setting in which the “LP
start times” are computed on-the-fly. In other words, the “LP start times” at time ¢ are
computed based on both the continuous relaxation, and all of the jobs that have been
scheduled prior to 7.

Results. We propose an efficient algorithm, called the fluid synchronization algo-
rithm (FSA), for the job shop scheduling problem with the objective of minimizing the
makespan. FSA rounds an optimal fluid solution such that the resulting schedule incurs
at most (I + 2) Pyax Jmax €Xtra time compared to a trivial lower bound; this trivial lower
bound coincides with the optimal value of the fluid relaxation. Thus, for the job shop
problem with a fixed number of job types, the error bound becomes a constant. (Fixing
the number of job types implies I, Ppax, and Jpax are constants; the only parameter
that varies is the number of jobs of each type.) An immediate consequence is that the
schedule produced by FSA is asymptotically optimal: as the number of jobs in the job
shop increases, the relative error of the schedule with respect to the trivial lower bound
converges to zero. We further extend the algorithm to address job shops with arrivals.

To put our result in perspective, consider the classical job shop scheduling problem,
which has exactly one job of each type. In this case, the combinatorial structure of the
job scheduling problem makes the problem very complicated to solve. Interestingly,
the results of this paper imply that as the number of jobs increases, the combinatorial
structure of the problem is increasingly less important, and as a result, a fluid approxi-
mation of the problem becomes increasingly exact. The results of this paper also imply
that a continuous approximation to the job shop problem is asymptotically exact. Our
results are consistent with the conclusions of several earlier papers that consider the job
shop problem with a fixed number of machines; in particular, the fact that such instances
become “easier” to solve with increasing number of jobs was recognized earlier in the
Soviet literature (see Sevast’janov [25]).

We also report computational results based on all benchmark instances chosen from
the OR library when N jobs from each job-type are present. The parameter N captures
the degree of job multiplicity. The results suggest that FSA has a relative error of about
10% for N = 10, 1% for N = 100, 0.01% for N = 1000. In comparison to eight
different dispatch rules that have similar running times as FSA, FSA clearly dominates
them. In comparison to the shifting bottleneck heuristic whose running time and memory
requirements are several orders of magnitude larger than FSA, the shifting bottleneck
heuristic produces better schedules for small N (up to 10), but fails to provide a solution
for larger values of N. Given its asymptotic optimality, which is present even for
moderate values of N, its ease of implementation, its short running times and moderate
memory requirements and its superior performance compared with different dispatch
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rules of comparable running times, we feel that FSA can be used in practice for job
shops of moderate multiplicity.

Related work.  There is an extensive literature on both job shop scheduling problems,
and fluid relaxations. We next provide a brief overview of some of these results, which
will also serve to place our results in perspective.

In spite of the intense attention, very little was known about approximation algo-
rithms for job shops until recently. Gonzalez and Sahni [9] proved that any algorithm in
which at least one machine is operating at any point in time is within a factor of J of the
optimal. Interesting approximation algorithms for shop scheduling problems appeared
in the Soviet literature in the mid seventies: these were based on geometric arguments,
and were discovered independently by Belov and Stolin [2], Sevast’janov [22], and
Fiala [7]. The results using this approach are in the spirit of our results, although based
on entirely different methods. These approaches typically produce schedules of length
Chax + €, where Cp,x is a lower-bound on the optimal makespan, and the error term € is
independent of the number of jobs. The strongest of these results is by Sevast’janov [23,
24] who proposed a polynomial-time algorithm that delivers a schedule with additive
error at most (Jmax — 1)(]]%.‘lx + 2Jmax — 1) Pmax, where J is the number of machines,
Jmax 18 the maximum number of stages of any job-type, and Pp,x is the maximum pro-
cessing time over all tasks. Our algorithm, while delivering a schedule with an additive
error independent of the number of jobs, has two distinct advantages: (i) the error bound
is substantially better (in fact, it is at most (I + 2) Pmax Jmax) When the number of job
types is small, and (ii) our algorithm is substantially simpler to implement. We note that
the earlier algorithm of Bertsimas and Gamarnik [3], while based on similar methods,
produces a schedule with makespan at most Cpax + 24/ Cmax Umax Jmax + Umax Jmax.
where Upax is the maximum load on a machine when there is one job of each type.
(This schedule is also asymptotically optimal for a fixed number of job types.)

Leighton, Maggs and Rao [17], motivated by a packet routing application, con-
sidered a restricted version of the job shop problem in which all of the processing
times are identically equal to one. (The job shop problem remains strongly NP-hard
even under this restriction.) Leighton, Maggs and Rao [17] showed the existence of
a schedule with length O(Cmax + Lmax), where Lpax := maX;es Z,{’:l pik is the
maximum length of any job. Unfortunately, their result was not algorithmic, as it re-
lied on a non-constructive probabilistic argument based on the Lovdsz Local Lemma;
they also discovered a randomized algorithm that delivers a schedule of length at most
O(Crax + Lmax logN) with high probability, where N is the number of jobs to be sched-
uled. Subsequently, Leighton, Maggs and Richa [18], using an algorithmic form of the
Lovész Local Lemma discovered by Beck [1], showed show how to find a schedule
of length O(Cax + Lmax) in O(J(Cmax + Lmax)(log L)(loglog L)) time, with proba-
bility 1 — 1/L — B for any positive constant 8, where L is the sum of the processing
times of the jobs. Shmoys, Stein and Wein [26] described a polynomial-time random-
ized algorithm for job shop scheduling that, with high probability, yields a schedule

2
of length 0(&% max{Cmax, Lmax}). They describe a (2 + €)-approximation

algorithm when J and Pp.x are constants (as is the case in our setting). These results
were subsequently improved by Goldberg, Paterson, Srinivasan, and Sweedyk [8], who
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present an algorithm for the job shop problem that constructs a schedule of length

1 l JJmaX l i JJmaXV Pmax 1 1
O((Cmax + Lmax)p), with p = 10;%;( 7 szx) [ °g‘{2;‘}f)g( T ) —‘ An interesting recent

development is the discovery of polynomial time approximation schemes for restricted
versions of the job shop scheduling problem; this result was discovered by Jansen,
Solis-Oba, and Sviridenko [15, 14]. While all of these algorithms serve an important
role — that of classifying these problems in the complexity hierarchy according to the
ease of their approximability — none of these algorithms seems practical. In contrast,
the algorithm proposed in this paper is accompanied by a guarantee of a small additive
error, is easy to implement, and appears to be practical, as demonstrated by extensive
computational results.

Structure of the paper.  In Sect. 2, we consider the makespan objective, and describe an
algorithm that provides an asymptotically optimal schedule. These results are extended
in Sect. 3 to a model in which deterministic arrivals occur over a finite horizon. In
Sect. 4, we present computational results on a variety of job shop instances from the
OR library. Section 5 contains some concluding remarks.

2. An algorithm for the makespan objective

This section considers the job shop problem with the objective of minimizing makespan,
and is structured as follows: In Sect. 2.1, we define the job shop scheduling problem
formally, and discuss the notation. In Sect. 2.2, we describe the fluid relaxation for the
job shop scheduling problem, and discuss its solution; this section is reproduced from
Bertsimas and Gamarnik [3] and is included here primarily for the sake of completeness.
In Sect. 2.3, we provide an algorithm, called the fluid synchronization algorithm (FSA).
In Sect. 2.4 we analyze the performance of algorithm FSA and prove that it yields
a schedule that is asymptotically optimal.

2.1. Problem formulation and notation

In the job shop scheduling problem there are J machines o1, 02, ... , 07 which process
I different types of jobs. Each job type is specified by the sequence of machines to
be processed on, and the processing time on each machine. In particular, jobs of type
i,i = 1,2,...,1 are processed on machines a{, aé, o ’03,- in that order, where
1 < J; < Jmax. The time to process a type i job on machine a,i is denoted by p; k.
Throughout, we assume that p; j are integers.

The jobs of type i that have been processed on machines a{, e o,i_l but not on
machine oli, are queued at machine a,i and are called “type i jobs in stage k” or “class
(i, k)” jobs. We will also think of each machine o as a collection of all type and stage
pairs that it processes. Namely, foreach j =1,2,...,J

oj={i.k:0j=0, 1<i<I 1<k=<J}
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There are n; jobs for each type i initially present at their corresponding first stage. Our

objective is to minimize the makespan, i.e., to process all the n; + n2 + - - - + n; jobs

on machines o1, ... , 0y, so that the time taken to process all the jobs is minimized.
Machine o; requires a certain processing time to process jobs that eventually come

to it, which is
Cj= Z Pi ki

(i.keo;

The quantity C; is called the congestion of machine o;. We denote the maximum
congestion by

Cmax = max Cj.
j=1,..

The following proposition is immediate.
Proposition 1. The minimum makespan C* of the job shop scheduling problem satisfies:

cr > Crax-

We define a few other useful quantities. For machine o, let
Ui= Y pik
(i,k)eo;
and

Pj = max p;r. (1)

(i,k)€a;

Namely, U; is the workload of machine o; when only one job per type is present, and
P; is the maximum processing time at o;. Finally, let

Umax = max Uj7 (2)
1<j=<J
and
Pmax = max Pj. 3)
1<j=<J

In the next section we consider a fluid (fractional) version of this problem, in which
the number of jobs n; of type i can take arbitrary positive real values, and machines
are allowed to work simultaneously on several types of jobs (the formal description of
the fluid job shop scheduling problem is provided in Sect. 2.2). For the fluid relaxation,
we show that a simple algorithm leads to a makespan equal to Cpax, and is, therefore,
optimal.

2.2. The fluid job shop scheduling problem

In this section we describe a fluid version of the job shop scheduling problem. The input
data for the fluid job shop scheduling problem is the same as for the original problem.
There are J machines o1, 02, ... ,0y, I job types, each specified by the sequence of
machines oli, k=1,2,...,J;, J; < J and the sequence of processing times p; x for
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type i jobs in stage k. We introduce the notation w; x = 1/ p; k that represents the rate of
machine a,i on a type i job. The number of type i jobs initially present, denoted by x;,
takes nonnegative real values.

In order to specify the fluid relaxation we introduce some notation. We let x; x (f) be
the total (fractional in general) number of type i jobs in stage k at time 7. We call this
quantity the fluid level of type i in stage k at time . We denote by T; x (f) the total time
the machine a,i works on type i jobs in stage k during the time interval [0, ¢). Finally
1{A} denotes the indicator function for the set A.

The fluid relaxation associated with the problem of minimizing makespan can be
formulated as follows:

o0
minimize / 1 Z xix(0) > 0% drt 4)
0 l<i<l,1<k<J
subject to xi1(0) = x; — pinTi1 (1), i=12...,1,t=0, (5

Xik() = pik—1Tin—1() — wixTix @), k=2,...,J;, i=1,2,...,1, t >0, (6)
0= Y (T —Tix)) < —t,¥n >0, 1,0>0, j=1,2,....J, ()

(i,k)eo;

xi k(1) =0, Tir(t) > 0. (8)

The objective function (4) represents the total time that at least one of the fluid
levels is positive. It corresponds to the minimum makespan schedule in the discrete
problem. Equations (5) and (6) represent the dynamics of the system. The fluid level of
type i in stage k at time ¢ is the initial number of type i jobs in stage k (x; for k = 1,
zero for k > 1) plus the number of type i jobs processed in stage kK — 1 during [0, £)
(given by ;i k—1T; xk—1(7)), minus the number of type i jobs processed in stage k during
[0, ©) (given by w; x T; x (£)). Constraint (7) is just the aggregate feasibility constraint for
machine o;.

Similar to the definition for the discrete problem, we define congestion in machine
oj as

Ci= Y pixi, €))
(i,k)ea;
and the maximal congestion as
Cmax = max Cj. (10)
I<j=<J

We next show that the fluid relaxation can be solved in closed form; see Weiss [27],
Bertsimas and Gamarnik [3].

Proposition 2. The fluid relaxation (4) has an optimal value equal to the maximum
congestion Cpax.

Proof. We first show that the maximum congestion Cp,ax is @ lower bound on the optimal
value of the fluid relaxation. For any positive time ¢ and for each i < I, k < J;, we have
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from (5), (6):

k
D o xia(0) = xi — i Tk 0).

=1

For each machine o; we obtain:

k
D opik ) xu®= Y puxi— Y, T =Cj—t,

(heo; =1 (i,k)ea; (i,k)ea;

where the last inequality follows from the definition of C; and Constraint (7) applied
tot1 = 0, 1o = ¢. It follows then, that the fluid levels are positive for all times ¢ smaller
than C;. Therefore, the objective value of the fluid relaxationis at leastmax ; C; = Cpax.

We now construct a feasible solution that achieves this value. Foreachi < I, k < J;
and each t < Cpax we let

PikXi
Ti k() = ——t,
! Cmax
X )
xii(t) =xi —puin T =xi— ——t,i=1,...,1,
max
xi k(1) =0, k=23,....Ji,i=1,...,L

For all > Cpyax we set T;x(£) = piixi, xik(t) = 0. Clearly, this solution has an
objective value equal to Cyax. We now show that this solution is feasible. It is nonnegative
by construction. Also by construction, Eq. (5) is satisfied for all # < Cpax. In particular,
Xi1(Cmax) =0, i = 1,2,..., 1. Moreover, forall i, k = 2,3,...,J; and t < Cpax
we have:

pik1 Tig1(0) = ik Tk (0 = pip_y Tik—1 () = pig Tix(0)
Xi : Xi

Cmax Cmax

t=0=x;(D,

and Eq. (6) is satisfied. Finally, for any #; < #2 < Cyax and for any machine o;, we
have:

Z (Tik(t2) — Tk (1)) = Z <lg,kxi f Di kXi t1>

(i,k)€o; (i,kyeq; > M Cmax
€ (h—1H)<tb—t
=——0m—-1n)<n-—"n,
Cmax
and Constraint (7) is satisfied. Note, that for the constructed solution x; x (Cpax) = 0 for
all i < I, k < J;. Therefore the feasibility for times ¢ > Cpax follows trivially.
O
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Let u;  be the fraction of effort allocated by machine a,i to processing (i, k) jobs in
the constructed optimal solution. Clearly,

d T; k(1) _ DPikXi
dt Crax .

Uik =

The constructed solution has a structure resembling a processor sharing policy. It
calculates the maximal congestion Cpax and allocates a proportional effort to different
job types within each machine to achieve the target value Cphax. Such an optimal policy is
possible, since we relaxed the integrality constraint on the number of jobs and allowed
machines to work simultaneously on several job types. In the following section we
use this fluid solution to construct an asymptotically optimal solution for the original
discrete job shop scheduling problem.

2.3. The fluid synchronization algorithm

We now provide an efficient algorithm to discretize a fluid solution. We start with
some definitions, followed by a formal description of our discretization algorithm. We
illustrate our algorithm on a small example, and also discuss the motivation behind our
approach. In the rest of this section the term “discrete network™ refers to the (discrete)
job shop scheduling problem, and the term “fluid relaxation” refers to the fluid job shop
scheduling problem. The term “discrete schedule” will refer to the schedule of the jobs
in the discrete network. Finally, whenever we use o; to refer to a machine, we assume
that the reference is to the machine in the discrete network, unless stated otherwise.

Definitions. We first present some useful definitions, and describe our algorithm; the
motivation behind these definitions will be described subsequently.

Discrete Start time (DS, x(n)): This is the start time of the nh (i, k) job in the
discrete network, i.e., the time at which the n™ (i, k) job is scheduled for processing
in the (discrete) job shop.

Discrete Completion time (DC; i (n)): This is the completion time of the n't (i, k)
job in the discrete network. In particular,

DC;r(n) = DS; r(n) + pi k. (11)

Fluid Start time (FS; x(n)): This is the start time of the nh (G, k) job in the fluid
relaxation, and is given by

FS; k(1) =0, (12)

Cm.
FSix(n) = FSip(n—1) + —=, n>1. (13)
py

1
Fluid Completion time (FC; ; (n)): This is the completion time of the n'h (i, k) job
in the fluid relaxation, and is given by
max

FCix(n) = FS; x(n) + < —. (14)

nj
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Nominal Start time (NS; x (n)): The nominal start time of the nM @i, k) jobis defined

as follows.
NS; 1 (n) = FS; 1 (n), (15)
NSi (1) = DSjj—1 (1) + pig—1, k>1, (16)

1

Ch.
NS; x(n) = max {Nsi,k<n— 1+ ;“ DS;x—1(n) + pi,k_l}, nk>1.
(17)

Nominal Completion time (NC; x(n)): The nominal completion time of the nth
(i, k) job is defined as follows.

C
NCi(n) = NS;x(n) + —=. (18)

nj

Remark. Asaconvention, we define DS; o(n) = DC;o(n) = 0,foralli, n. Similarly,
we define p; o = Oforalli, n.

Each job in the discrete network is assigned a status at each of its stages, which is
one of not available, available, in progress, or departed. The status of the nth (@, k) job
at time 7 is:

e not available,if 0 < t < DCj—1(n).
e available, if DC;r—1(n) < t < DS;i(n).
e in progress,if DS;x(n) < t < DC;(n).
e departed,ift > DC;(n).
We define the queue-length of class (i, k) jobs at time ¢ to be the total number of class
(i, k) jobs that are available or in progress at time t.
The following lemma is an easy consequence of our definitions.

Lemma 1.
(a) The fluid start time and fluid completion time of the n™ class (i, k) job satisfy

C
FSix(n) = n—1H—2, n=1,2,...,n;. (19)
nj
Cmax
FCix(n) = n , n=1,2,...,n;. (20)

i

(b) The nominal start time, NS;(n), and the nominal completion time, NC; i (n), of
the n'™ (i, k) job can be computed at time DS; ;_1 (n). Specifically,

Cmax
NS;r(n) = max DS;j—1(r) + pix—1+ (n—r) .

nj

In particular, NS; (n) and NC;(n) can be computed no later than the time at
which the n™ (i, k) Jjob becomes available.
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(c) The nominal completion time of the n'™ class (i, k) job satisfies

Chs
NCi1(n) =n—2,  n=12,...,n, (21)
nj
C
NCix(1) = DCix-1(1) + ;“?X, k>1, (22)
l
Chs
NC;(n) = max {NCix(n —1), DCir_1(n)} + —=, n,k>1. (23)
py

1

Proof. Part (a) is an immediate consequence of the definitions of FS; x (n) and FC; x(n).
For part (b), we first suppose that k > 1, and expand the recurrence relation given by
Egs. (16) and (17) to obtain

Cmax

1

NS; r(n) = max {NSi,k(n -1 + , DSir—1(n) + pi,k—l}

Cmax }

nj

= max {DSi,k—l )+ pik—1+m—r) (24)

1<r<n

All of the terms involved in Eq. (24) become known when the nh G k—1) job

is scheduled for service in the discrete network, i.e., at time DS; x—1(n); this proves

part (b) for k > 1. For k = 1, the nominal start times are determined (at time zero) by

Eq. (15), which completes the proof. Part (c) follows from the definition of NS;(n)
and NC, i (n).

O

Description of algorithm FSA. Scheduling decisions in the discrete network are made
at well-defined scheduling epochs. Scheduling epochs for machine o; are instants of
time at which either some job completes service at o; or some job arrives to an idle
machine o;. Suppose machine o; has a scheduling epoch at time 7. Among all the
available jobs at machine o, our algorithm schedules the one with the smallest nominal
start time. This scheduling decision, in turn, determines the nominal start time of this
job at its next stage (by part (b) of Lemma 1).

Lemma 1 ensures that the nominal start time of a job is determined no later than
the time at which it becomes available. Thus, our algorithm is well-defined — every
job that is available for scheduling will have its nominal start time already determined.
A complete description of the algorithm appears in Fig. 1.

Example. Consider the network of Fig. 2: there are two machines and two types of jobs.
Type 1 jobs require 2 units of processing at machine 1, followed by 4 units of processing
at machine 2. Type 2 jobs require 1 unit of processing at machine 2, followed by 4 units
of processing at machine 1. Initially, we are given 3 jobs of type 1 and 6 jobs of type 2;
our objective is to find a schedule that minimizes the makespan. As before, we use (i, k)
to denote type i jobs at stage k. The optimal makespan of the associated fluid job shop
scheduling problem, with the corresponding optimal fluid controls are given by:

Cmax = 30,
(at machine 1) w11 =0.2, uz2 =0.8,
(at machine2) up1 =0.2, u;2=0.4.

We now step through FSA and illustrate how a discrete schedule is determined.
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Initialization:
Set NS;1(n) = (n— 1)0;;77, forn=1,2,...,n;, i=1,2...,1.
Declare all jobs in stage 1 as available.

For j =1,2,...,J: set machine j to have a scheduling epoch.

While (jobs remain to be processed) {

Process job completions
For j =1,2,...,J:
if machine j has a scheduling epoch at current-time
if the n'" job (i, k) € o just completed service
if k < J;, declare job n of class (i,k + 1) as available.
if (i,k + 1) € o and j' is idle, set machine j' to have
a scheduling epoch at current-time.
Schedule jobs at machines that have scheduling epochs
For j=1,2,...,J:
if machine j does not have any jobs available
next-epoch(j) = oo
else
if machine j has a scheduling epoch at current-time
Schedule an available job with the smallest nominal start time.
If the n'" (4, k) job is scheduled
Set DC; x(n) = current-time +pj k.
if k< J;,
If n=1set NS;rt1(n) = DC; k(1)
else set NS; k+1(n) = max {DCi,k(n), NS;kt1(n—1) + Cmax/n,-}
next-epoch(j) = current-time + p; k.
else
next-epoch(j) = oco.
Prepare for the next epoch
next-time = minje( 2,...,73 next-epoch(s).
current-time := nezt-time
For j=1,2,...,J:
if next-epoch(j) = current-time,

set machine j to have a scheduling epoch at current-time.

Fig. 1. The discretization algorithm FSA
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Type 1
B — —
M, M,
Type 2
B —— fe———

Fig. 2. A two station network

ny=3p,1=2,p12=4
np=6;py1=1,pro=4
Optimal Fluid Solution: Cpax = 30; 11 | =02, 41 5 = 0.4, 13 =02, u3 5 = 0.8

t = 0: We first perform the initialization step: We compute NS; 1(n) forn = 1,2, 3; and
all three jobs of type (1, 1) are declared available at M. Similarly, at M>, we compute
NS> 1(n) forn = 1,...,6, and all six jobs of type (2, 1) are declared available. The
“state” of the system seen by the machines M and M5 is shown in Table 1.

Table 1. State of the system at 7 = 0

At 1, 1) 2,2)
M, jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; k(n) 0 10 20 - - - - - -
status a a a na na na na na na
At (1,2) 21
M jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; i (n) - - - 0 5 10 15 20 25
status na na na a a a a a a

Remark. The tables shown at time ¢ present the state of the system as seen by the
machines prior to the scheduling decisions made at time . As a consequence of the
scheduling decisions made at time 7, some additional nominal start times may get
defined — we shall explicitly state these in our discussion. The “status” row in each
table indicates the status of each job, and is one of “unavailable” (na), “available” (a),
“in progress” (p) or “departed” (d). In illustrating the algorithm on this example, we
shall exhibit similar tables for each of the machines at all scheduling epochs.

Example (contd.). We now return to our example, and consider how the machines M
and M, make their scheduling decisions at time ¢ = 0. At My, job 1 of type (1,1) has
the smallest nominal start time among all available jobs, and so is scheduled. Similarly,
at M», job 1 of type (2, 1) has the smallest nominal start time among all available jobs,
and so is scheduled. These decisions determine the values of NSj2(1) and NS> 2(1);
using Eq. (16), we see that NS; 2(1) = 2 and NS22(1) = 1. The next scheduling epoch
is for My att = 1.

t =1: The state of the system is summarized in Table 2. Only M> has a scheduling epoch.
Among all the available jobs at M», the second (2, 1) job has the smallest nominal start
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time, and so is scheduled for service. This determines the value NS> 2(2), which is
computed (using Eq. (17)) as follows.

Chs
NS$22(2) = max {NSz.z(l) + = D)+ pz.l},

1

=max {l+5,1+ 1} =6.

The next scheduling epoch is at t = 2, for both M| and M>.

Table 2. State of the system at # = 1

At (1, 1) 2,2)
My job 1 job2 job3 | jobl job2 job3 job4 job5 job6
NS; i (n) 0 10 20 1 - - - -
status p a a a na na na na na
At (1,2) 2, 1)
M jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; (n) 2 — - 0 5 10 15 20 25
status na na na d a a a a a

t = 2: As before, the state of the system at ¢ = 2 is summarized in Table 3. The available
job with the smallest nominal start time at M is the first (2,2) job; so this job is
scheduled for service at M. Similarly, the available job with the smallest nominal start
time at M> is the first (1, 2) job, which is scheduled for service. Since both of the jobs
scheduled leave the network, no additional nominal start times need to be computed.
The next scheduling epoch is at t = 6, for both M| and M>.

Table 3. State of the system at 1 = 2

At (1, 1) 2,2)
My job 1 job2 job3 | jobl job2 job3 job4 job5 job6
NS; i (n) 0 10 20 1 6 - - - -
status d a a a a na na na na
At (1,2) 2, 1)
My job 1 job2 job3 | jobl job2 job3 job4 job5 job6
NS; (n) 2 — - 0 5 10 15 20 25
status a na na d d a a a a

t = 6: The state of the system is summarized in Table 4. The available job with the
smallest nominal start time at M is the second (2, 2) job; so this job is scheduled for
service at M. Since this job leaves the network after its service, it does not determine
any additional nominal start times. Similarly, the job with the smallest nominal start
time at M» is the third (2, 1) job, which is scheduled for service; this determines
NS> 2(3) = 11. The next scheduling epoch is at t = 7, for M>.
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Table 4. State of the system att = 6

At (1, 1) 2,2)
M, jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS, (n) 0 10 20 1 6 - - - -
status d a a d a na na na na
At (1,2) 2,1)
My jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS, (n) 2 - - 0 5 10 15 20 25
status d na na d d a a a a

t = 7: The state of the system is summarized in Table 5. Machine M, schedules job 4 of
class (2, 1), which forces NS> 2(4) = 16. The next scheduling epoch is at ¢ = 8§, for

M.

Table 5. State of the system att =7

At 1, 2,2)
My jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; i (n) 0 10 20 1 6 11 - - -
status d a a d p a na na na
At (1,2) 2, 1)
M»> jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; k(n) 2 - - 0 5 10 15 20 25
status d na na d d d a a a

t = 8: The state of the system is summarized in Table 6. Machine M> schedules job 5 of
21. The next scheduling epoch is at t = 9, for

class (2, 1), which forces NS> 2(5)

M.

Table 6. State of the system at 7 = 8

At (1, 1) (2,2)
M, jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; i (n) 0 10 20 1 6 11 16 - -
status d a a d P a a na na
At (1,2) 2,1)
M»> jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; i (n) 2 - - 0 5 10 15 20 25
status d na na d d d d a a

t =9: The state of the system is summarized in Table 7. Machine M> schedules job 6 of
class (2, 1), which forces NS> 2(6) = 26. The next scheduling epoch is at # = 10, for
both M| and M>.
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Table 7. State of the system att =9

At 1, 1) 2,2)
My jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS, (n) 0 10 20 1 6 11 16 21 -
status d a a d p a a a na
At (1,2) 2, 1)
My jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS, (n) 2 - - 0 5 10 15 20 25
status d na na d d d d d a

t =10: The state of the system is summarized in Table 8. Machine M; does not have any
jobs to process and hence idles. The job with the smallest nominal start time at machine
M; is job 2 of class (1, 1). The next scheduling epoch is at t = 12 for M.

Table 8. State of the system at t = 10

At (1, 1) (2,2)
M, jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; i (n) 0 10 20 1 6 11 16 21 26
status d a a d d a a a a
At (1,2) 2,1
M»> jobl job2 job3 | jobl job2 job3 job4 job5 job6
NS; k(n) 2 - - 0 5 10 15 20 25
status d na na d d d d d d

By now, the mechanics of the algorithm are clear, and so we end the discussion of
this example at this point. We note that the rest of the schedule can be computed easily:
observe that the nominal start times of all the jobs that require processing at M; have
been determined already; this dictates the order in which jobs get processed. At M>, only
jobs 2 and 3 of class (1, 2) require processing, and they will be scheduled in that order.
The schedule determined by FSA appears in Table 9. We note that in this example, the
schedule determined by FSA has a makespan of 30, which equals the lower bound of
Cmax = 30; thus the schedule shown in Table 9 is clearly optimal.

O

Running time: The running time of FSA is linear in the number of jobs, since each job
is only addressed a constant number of times. Strictly speaking, in the case that there is
multiplicity of jobs, the algorithm is not polynomial, as we need not describe each job
separately as part of the input.

Motivation: The key motivation behind FSA is to schedule jobs in a way that keeps
the discrete schedule “close” to the optimal fluid solution. Since the optimal fluid cost
is a lower bound, we expect this to be a good strategy. The notion of “closeness” is
formalized in our definition of nominal start times of jobs. The nominal start time,
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Table 9. Discrete schedule computed by FSA

Time Queue  length

t (L,1) (1,2) 2D 22
0 3* 0 6* 0
1 3 0 5* 1
2 2 1* 4 2%
6 2 0 4% 1*
7 2 0 3* 2
8 2 0 2% 3
9 2 0 * 4
10 2% 0 0 4
12 1 1 0 4*
16 1 * 0 3*
20 * 0 0 2
22 0 * 0 2%
26 0 0 0 *
30 0 0 0 0

(* indicates a job was scheduled at that time)

NS; i (n), of the n't (i, k) job reflects the ideal time by which it should have been
scheduled.

Since our main objective is to get “close” to the optimal fluid solution, a natural
idea is to set the nominal start time of the n® (i, k) job to be its start time in the fluid
relaxation (FS; x (n)). While this is reasonable in a single machine setting, this does not
give much information in a network setting. To illustrate this, consider the n™ job of
class (i, k). Its fluid start time, FS; x(n), is identically equal to its fluid start times at
stages 1, 2, ...k —1, and is an artifact of the continuous nature of the fluid relaxation. In
contrast, in the actual problem, even if the machine at stage (i, k) could process arrivals
continuously, job n cannot start at stage k unless it has completed processing at stage
at k — 1 in the discrete network! Our definition of nominal start time can be viewed as
a correction to the fluid start time to account for this effect. Another way to understand
the relationship is to observe the similarity in the definitions of FS; x(n) and NS; x(n),
which are reproduced below.

FSi k(1) =0,

C:
FSix(n) = FSix(n—1) + —=, n>1,
n;

NS;1(n) = FS;1(n),
NS; k(1) = DCix—1(1), k>1,
Cm‘dx

1

NS; k(n) = max {NS,‘,k(n -1 + , DC,;k_l(n)}, n>1k>1.

In the definition of nominal start times, if we ignore the terms involving the discrete
network, we obtain exactly the fluid start times! Our approach is inspired by (and related
to) research that deals with generalized processor sharing approaches to flow control (see
Parekh and Gallager [20,21]), and fair queueing (see Demers, Keshav and Shenker [6],
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Greenberg and Madras [10]). In fact, our definition of nominal start times can be viewed
as a natural adaptation of the notion of virtual start times, used by Greenberg and
Madras [10], to this setting.

2.4. Analysis of FSA

In this section, we provide a complete analysis of the algorithm shown in Fig. 1, and
prove our main result, which is stated as Theorem 4. In what follows we will make
repeated use of the start times FS;x(n), NS;x(n), and DS; x(n), and the completion
times FC; x(n), NC; x(n), and DC; y(n); these quantities are defined by Eqs. (12)—(18),
and further simplified in Eqs. (19)—(23). The proof of Theorem 4 involves understanding
the relationships between the various start times and completion times for a fixed job. In
particular, suppose we consider job n of class (i, k); our objective is to establish a strong
relationship between FC; x(n) and DC; x(n) these are, respectively, the completion
time of this job in the fluid relaxation and in the discrete network. We establish such
a relationship using using the nominal completion time, NC; i (n), as an intermediary.

Our first result relates the the discrete start time, DS; (), to the nominal start time,
NS, k(n). Specifically, we show that

DSix(n) = NSix() + (Pyi + Uy, (25)

where o,i is the machine that processes class (i, k) jobs. A result in this spirit, but
for completion times, appears in the literature; it was first proved by Greenberg and
Madras [10] for uniform processor sharing systems, and was generalized by Parekh and
Gallager [20] to generalized processor sharing systems.

First, we develop the machinery necessary to prove Eq. (25). To this end, we focus
on the particular machine a,i = o; at which class (i, k) is processed: as we shall see,
only the classes that are processed at machine o play a role in establishing Eq. (25). To
avoid cumbersome notation, we drop the usual (7, k) notation for classes; instead we let
R be the set of classes processed by machine o, and use r to denote a generic element
of R; these conventions will be in effect until we establish Eq. (25).

We start with a few definitions. Let r € R; we define 7,°(f) and T,d(t) as follows:

crn | (a=1) pr+u, (t — NS:(n)), for NS,(n) <t < NC.(n);
I (0= {n Dr, for NC,(m) <t < NS,(n + 1. *®
don | (=1 pr+ (t = DSy(n)), for DS, (n) <t < DCr(n);
I @ = {n Pr for DC,(n) <1 < DS, +1). 7

Thus, T,d (f) can be interpreted as the total amount of time devoted to processing class r
jobs in [0, #) in the discrete network; And 7,(¢) admits the same interpretation for the
“continuous” schedule defined by the nominal start times, in which a job of class r is
processed continuously at rate u,. We also note that 7, (¢) is continuous: to prove this,
we need only check continuity at t = NC,(n). Suppose r = (i, k); Recall that

nipr

)
Cmax

U, =
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and

Cmax

NCy(n) = NS;(n) =

ni
Using these observations in Eq. (26) at t = NC,(n), we have
T; () = (n — 1) pr +u,(NC;(n) — NS;(n))

nipr Cimax
Cmax 7

= (1) pr+
:nprs

which is consistent with Eq. (26) when t = NC, (n).
We define a potential function, ¢, (¢), for class r jobs at time ¢ as follows:

¢r(f) = max {T,C(t) — T,d(t), —Pr}-

Our main motivation in defining the potential function, ¢,(?), is to capture the extent
to which the “discrete” schedule is behind the “continuous” schedule on class 7 jobs
up to time ¢. For this reason, we penalize the discrete schedule for falling behind the
continuous schedule, but give credit for at most one job when the discrete schedule is
ahead of the continuous schedule. We now proceed to derive some useful properties of
¢, (1), stated as a series of lemmas.

Lemma 2. Lett be a scheduling epoch at machine o j. Then the following two statements
are equivalent.

(a) For some n > 1, job n of class r is such that NS, (n) <t < DS, (n).
(D) ¢r(1) > 0.

Proof.
(a) = (b):
From Eq. (26), we have

NS, (n) <t = TS > (n—Dp,. (28)
Similarly, from Eq. (27), we have
DS,(n) >t = TI® < (n—1)p,. (29)
Simplifying Eqgs. (28) and (29), we obtain
T¢(1) — T(1) > 0.
Noting that ¢, (1) = max{T (1) — T,d(t), — pr}, we conclude that ¢, (1) > O.

(b) = (a):
By definition,

&) >0 = T(r) — T(1) > 0.
Since ¢ is a scheduling epoch in the discrete network, Trd (#) should be an integral multiple
of pr,ie., T4(¢) = Ip, for some [ > 0. Since T¢(#) > T(t), the (I + 1) job of class r

satisfies NS, (I +1) <t < DS, (I + 1).
O
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Lemma 3. Let t be a scheduling epoch at machine o, and suppose ¢,(t) > 0 for
some r. Suppose the job scheduled to start at machine o at time t belongs to class r'.
Then ¢, (1) > 0.

Proof. Since ¢,(f) > 0, by Lemma 2, there exists n such that NS,(n) < t < DS, (n).
In particular, o; cannot idle as there is at least one job waiting to be served. If /' = r,
we are done, as ¢, (f) > 0 by assumption. If not, let n’ be the job of class ' that was
scheduled at time ¢. Since FSA selected n’ over n, NS (n') < NS, (n); this is because,
at any scheduling epoch, FSA schedules a job with the smallest nominal start time. In
particular, NS, (n’) <t = DS, (n"). Using Lemma 2, we conclude that ¢, (1) > 0.

O

A busy period for machine o; begins when a job arrival (from its previous stage) to
o; finds it idle; similarly, a busy period for machine o; ends when a job departure from
oj leaves it idle.

Lemma 4. Let t be a scheduling epoch at machine o that begins a busy period. Then,

¢r(n) =< 0. (30)

Proof. Let W,.(¢) is the sum of the processing times of all the class r jobs that arrive prior
to time 7. Since 7 is a scheduling epoch at o; that begins a busy period, Trd ® = W (.
Also, TS(1) < W,(t), because W, (¢) represents the total amount of class r work that
has arrived up to time ¢. Thus, T, (f) — T,d(t) < 0, for every r. By definition,

¢ () = max {T(1) — T4 (1), —p,} < O.

O
Lemma 5. Lett be a scheduling epoch at machine o;. Then,
R
D 6 < 0. 31
r=1
Proof. Lett;, tr, ..., tp be the list of scheduling epochs during an arbitrary busy period

ino ;. (Note that 7, is the epoch that concludes the busy period.) We will prove this lemma
using induction on scheduling epochs. By Lemma 4, the result is true at #1, the beginning
of the busy period. For [ < b, suppose that Eq. (31) holds fort = 1#1,%,...6—1. We
now prove that Eq. (31) holds for ¢ = ;. Since #,_; does not conclude a busy period,
some job is scheduled to start in machine o at time #;—1; let r’ be the class of this job. By
definition, #; = 7,1 4+ p,». We next relate the potential functions at time #,_1 and #; for
each job class. In doing this, we shall use the following inequalities that ¢, (¢) satisfies:

¢r(1) = TE(r) — T (1), (32)
¢r (D) + pr > 0. (33)
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Since class r jobs are allocated a fraction u, of effort in the continuous schedule, we
have:

TS(n) < T (1) + urpp. (34)

Also, at the machine o7}, since a job of class r’ is scheduled in the interval [#_1, 1), we
have

TS () = TS (1-1) + pr. 35)
and
T4(t) = T4 (4-1), forr # 7. (36)
Thus,
¢ (1) = max {TS (1) — T9 (1), —pr }
< max {Tﬁ(tz—l) - T,‘,l(tl_1) + uy pr — pr, —Pr’}
(by Eq. (34) for r = r/, and Eq. (35))
< max {¢r’ (t1—1) — pr(L —up), _pr/}‘ (by Eq. (32)). (37
For r # 1/, we have
¢ (1) = max {T () — T @), = pr}
< max {TE(t—1) — T (ti—1) + urprr — py )
(by Eq. (34) for r # r/, and Eq. (36))

< max{¢,(t1—1) + ur pr, —pr} (by Eq. (32)).
= ¢y (t1—1) +urpy.  (by Eq. (33)). (38)

We now consider two possibilities depending on whether ¢,/ (f;_1) > 0 or not.
Case 1. ¢ (t;1—1) > O:

Since ¢,/ (f—1) > 0, and u,» > 0,

¢ (ti—1) — pr’(l —up) > —Pr- (39)
From Eqgs. (39) and (37), we obtain
O (1) < ¢p(ti—1) — pr(1 —up). (40)

Thus,

R
Do) =)+ D i)
r=1 rir#r’
< ¢r(-1) — pr(—up) + Y (@ (1-1) +urpy)
rirr
(by Egs. (38) and (40))
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R

R
= Z¢r(tl—1) - pﬂ(l - Zur>
r=1 r=1
R
> ¢
r=1
0.

IA

R

r(t1-1) (Z”r < 1)
r=1

< (by the induction hypothesis).

Case 2. ¢ (t1—1) <O:

Since a job of class r’ is scheduled at #/_1, and since ¢,/ (/1) < 0, we use Lemma 3 to
conclude that there cannot be any job class with positive potential, i.e.,

¢ (t1—1) <0, forallr. 41)
From Egs. (41) and (38), we have

¢r(t) <urpp, r#r. (42)
Similarly, from Eqgs. (41) and (37), we obtain

¢r’(tl) = maX{—Pr’(l - ur’)v _pr’}
= —pu(l —up). (43)

Adding Eqgs. (42) and (43), we have
R R
Z@MSm(Zm—Q
r=1 r=1
R
<0. <Z Uy < 1).
r=1

In either case, we have shown that

R
D ) <0,
r=1

completing the induction.

We are now ready to establish Eq. (25).

Theorem 1. Let NS; i (n) be the nominal start time of the n'h (i, k) job; let DS; i (n) be
its start time in the discrete network. Then,

DSik(n) = NSix(m) + (Pi + Usi). (44)
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Proof. We let r = (i, k), and let R be the set of all job classes processed by machine
a,i. For convenience, we also let o; = o,i. If DS, (n) < NS, (n), the lemma is trivially
true. Suppose DS, (n) > NS, (n). Let t be the first time instant in [ NS, (n), co) at which
the discrete network has a scheduling epoch. Note that ¢ < DS, (n), since, by definition,
t is the first time instant at which the job under consideration could be scheduled in
the discrete network. Our plan for the proof is to consider the sum of the processing
times, S, of all jobs that are processed at machine o; in the discrete network in the
interval [z, DS, (n)). Clearly, DS,(n) = t+ S, since FSA does not idle when jobs
are available to be processed. We will show that all such jobs have nominal start times
at most 7, and then proceed to find an upper bound on the number of such jobs, thus
providing an upper bound on S.

Consider a job, say job n’ of class r/, that was scheduled in the discrete network in
the interval [#, DS, (n)). Since job n of class r was a candidate during this period, and
since it was not selected, we have

NS, (n') < NS,(n). (45)

This is because FSA always selects a job with the smallest nominal start time. From
Eq. (45) and the fact that NS, (n) < t, we obtain

NS, (n) <t. (46)

Thus, we have established that the jobs processed during the interval [¢, DS, (n)) have
nominal start times at most . By Lemma 3,

¢ (D) > 0, @7)
if a job belonging to class r’ is scheduled in the discrete network in the interval
[t, DS, (n)).

Let

B.() = {n | NSy(n') <t < DS,(n)}.

In other words, B, (f) consists of those class 7’ jobs that have started in the continuous
schedule before time ¢, but start in the discrete network at or after . From Eq. (46), the
set of jobs that are processed in the discrete network during [z, DS, (n)) is a subset of
U, By (). Thus, we are naturally led to considering the cardinality of B, (f).

If B/ (t) # @, let

By(t) = {a+1,a+2,...,a+1}, a>1,
i.e., |By(t)| = L. (The particular form of B, (f) follows from the fact that jobs within
a class are served in FCFES manner.) Since the (a + 1)t job has started service in the
continuous schedule, the (a + [ — 1) job has completed service in the continuous

schedule. Thus,

TS > (a+1—1) py,
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and
TS0 = a p;.
As a result, we obtain
¢ () = max (TS0 — T, —py} = TS0 — T > (= Dpy,

and hence,

(—1) < ¢r’(t)7
pPr
which implies
By (D] =1 < ¢r® + 1. (48)

I

From Eq. (48), the total time required to process all the jobs in B,/ (f) in the discrete
network is either zero (if B,/ (f) = @) or at most |B ()| py < ¢ (t) + p,». Thus, the
total time required to process all the jobs in B, () is at most max{¢, (f) + p,, 0}, which,

by Eq. (33),1s ¢ (1) + pp.
Thus, the total time S required to process all the jobs scheduled in the discrete
network during [#, DS, (n)) satisfies:

R
DS,(n)—t < S< Y ¢u(0)+ pr

r'=1
R
< Z py.  (by Lemma 5). (49)
=1

Moreover, ¢ is defined as the first scheduling epoch for the discrete network after
time NS, (n). In the interval [NS, (n), t], if some job, say of class r, is being processed,
then

t—= NS (n) < p;. (50)
From Egs. (49) and (50), we obtain

R
DS, (n) — NS,(n) < / 4+ max /
F(n) — NS, (n) < ;1 pr+ max py
=U;+ P;.
O
We now use Theorem 1 to establish a relationship between NC; (n) and FC; (n).
Theorem 2. Let NCj i (n) be the nominal completion time of the nth (i, k) job, and let
FCi k(n) be its completion time in the fluid relaxation. Then,

k—1
NCix(n) < FCix(n)+ ) (2 Py +Uyp. 51)
=1
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Proof. We fix a job type i, and prove this result by induction on the stage number.
The base case for the induction is easy: for k = 1, NC; x(n) and FC; x(n) are identical
(Egs. (14), (15), and (18)). Suppose the lemma is true for all (i, k — 1) jobs, k > 2.
Consider the first (i, k) job.

Cmax

NCi (1) = DCijp—1 (1) + (by Eq. (22))

nj

Cmax

= DS j—1(1) + pik—1 +

(by Eq. (11))

1

Con:
< NSig—1(D) + (Pyi + Ui )+ pig—1 + :dx (by Theorem 1)
1
= NCix—1(D) + Py +Usi )+ pik-1 (by Eq. (18))

k=2
< FCijm1(1) + lej(z Py +U,) + (P + Uy )+ pike
(by the induction hypothesis)
k—1
< FCix()+ ) (2 Py +U,).  (byEq.(20))
I=1
Thus, the Lemma is true for the first (i, k) job. Suppose it is true for the first (n — 1)
(i, k) jobs. Consider the n't (i, k) job (n > 1,k > 1). From Eq. (23),
Cmax

i

NCi i (n) = max {Nci,k(n -1, Dci,k—l(n)} +

We consider the two cases.
Case 1. NC;(n) = NC;r(n — 1)+ Cyax/ni.

In this case, we have:

Chn:
NCix(n) = NCix(n — 1) + —=
1
il Cmax
< FCikn =1+ ) (2 P+ Up) + ==
I=1 !

(by the induction hypothesis)
k-1
< FCix(n)+ ) (2 P+ U,).  (byEq.(20)
I=1
Case 2. NCiy(n) = DCji—1(n) + Cmax/n;.

In this case, we have:

C
NC;(n) = DCj—1(n) + nl

1

C
= DSis-1(n) + pis—1 + ——  (byEq.(11))

nj
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C
< NSik—1(n) + (P”/i_l + U"/i_l) + pir1 + :ax (by Theorem 1)
1
= NCig—1(n) + (P + Ui )+ pix-1 (byEq. (18))

k=2
< FCig—1(n) + 2(2 Poi+Up) + (P + Ui )+ pik-i
=1
(by the induction hypothesis)
k-1
< FCixm) + ) (2 Py +U,.  (byEq.(20)
I=1

O

The following theorem relates DC; x(n) to FC;(n), and is an immediate conse-
quence of Theorems 1 and 2.

Theorem 3. Let FC; x(n) (DCj (n)) be the completion time of the n'h (i, k) job in the
fluid relaxation (discrete network). Then,

k
DCix(n) < FCix(n) + ) (2 Py + Uyp). (52)
=1

Proof. From Theorem 1, we have
DS; x(n) < NS; r(n) + (Pf’/f + Uai)’
and so,

DCiy(n) = DS; r(n) + pixk
= NSik(n) + (Pyi + Us) + Pik
C
= NCik(n) = ===+ (Ppy + Uy + pik
1
< NCik(n) + (Pyi + U,0). (since pix < Cmax/ni). (53)

From Egs. (53) and (51), we obtain Eq. (52).

We are now ready to state our main result.

Theorem 4. Consider a job shop scheduling problem with I job types and J machines
01,02, ... ,0y. Given initially n; jobs of type i = 1,2,...,1, the FSA produces
a schedule with makespan time Cp such that

Ji
* . .
Chnax < C" < Cp = Cpax + 12?,122’17( 1 ;(2 Pal’ + Ual’)- (54)
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In particular,
Cp _ Cp

C* - Cmax

— 1, (55)

as

I
Zni — OQ,
i=1
where C* is the optimal makespan.

Proof. From Egs. (12), (13) and (14), we see that
FCi,J,- (n;) = Cmax
forall i € I. Using Theorem 3,
Ji
DCig,(ni) < FCigy(ni) + ) (2 Py + U,
I=1
Ji
= Cmax + Z (2 Pgli + Ugli)‘
I=1
The result follows by observing that

Cp = max {DC; j,(n;)}.
iel
o

From Theorem 4, we see that the additive error of the schedule computed by FSA
is bounded from above by Jmax (2 Pmax + Umax); using Umax < IPmax, We note that the
additive error of the schedule constructed by FSA is at most Jmax Pmax (I + 2), which
is substantially smaller than the guarantees provided by Sevast’janov’s algorithm [23,
24] when [ is small. We note that an additive error of (Jmax — 1) Pmax 1S necessary for
any algorithm that uses the optimal fluid cost for comparison purposes: for example,
consider a simple flow shop with J stages, and let the processing time at each stage
be P. If there are N jobs to start with, the optimal fluid cost is NP, whereas the optimal
makespanis (N4 J—1) P. Aninteresting open problem is to find the “optimal” additive
error for algorithms based on fluid relaxations, and to design algorithms that achieve
this additive error.

3. Makespan with deterministic arrivals

This section generalizes the results of Sect. 2 to a model in which external arrivals
are permitted over a (suitably restricted) finite horizon [0, T*]. The objective is to
minimize the time required to process all the initial jobs plus the jobs that arrive during
[0, T*]. This section is structured as follows: In Sect. 3.1, we formally define the model
considered; The associated fluid relaxation and its solution is discussed in Sect. 3.2. In
Sect. 3.3, we prove that the fluid synchronization algorithm (FSA) yields a schedule that
is asymptotically optimal.
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3.1. Problem formulation

The model considered here is identical to that of Sect. 2.2, except that external arrivals
are permitted. We assume that type 7 jobs arrive to the network in a deterministic fashion
at rate A;. The traffic intensity at machine o, denoted by p;, is defined as

pj = Z DikAi. (56)

(i,k)ea;

Our objective is to minimize the time required to process all the ny +ny +--- +ny
jobs, plus the jobs that arrive in the interval [0, T*], where

T* — max Z(i,k)eoj Pikni

(57)
j I —pj

Remarks.

e Observe that since arrivals to the network after 7* are irrelevant for our objective,
we may assume that arrivals occur over a finite horizon [0, 7*].

e In considering the asymptotics, we let n — oo; this will result in 7* — oo as well,
as specified in Eq. (57). We emphasize that 7* is implicitly determined by the choice
of A; and n;, and is not part of the input.

As before, we define the congestion of machine o; as

Ci= Y pixlni+nT". (58)

(i,k)eo;
We denote the maximum congestion by

Cmax = max Cj.
j=1,..

The following proposition is immediate.
Proposition 3. The minimum makespan C* of the job shop scheduling problem satisfies:
C* > Crax.
We next show that Cnax = T*.
Proposition 4. The maximum congestion Cpax of the job shop satisfies:
Cmax = T,
Proof. Let j be such that

_ Z(i,k)eaj Pi ki
1-— Pj ’

T*
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Then,

Ci= Y. pixni+1T%

(i,k)ea;

= Y pisni+p;T*  (byEq.(56))

(i,k)ea;

> (i keo; Piknli
= Z Di ki +pj(l’1)Lp.ll (by choice of j)
—Pj

(i.keo;

=T*

which shows that Cpnax > 7. Now, we show that C = T* for an arbitrary machine j’.
We have

Cp= Y pikni+nT"

(i,k)eoj/
= > puni+pyT*  (byEq.(56))
(ik)eo;
<A —=p)T*+p;yT* (by definition of T*)
= T*’

which proves that Cypax < 7.
O

We next consider the associated fluid relaxation and show that a simple algorithm
leads to a makespan equal to Cpax, and is, therefore, optimal.

3.2. The fluid job shop scheduling problem

The fluid relaxation associated with the model considered in Sect. 3.1 is as follows:

o0
minimize / 1 > xix® >0t (59)
0

1<i<Il,1<k<J
subject to x; 1 () = x; + A;min(t, T*) — w1 T (0, i =1,2,...,1, 1 >0, (60)
Xik(D) = pik—1Tik—1O) — pixTix(@®, k=2,..., Ji,i=1,2,..., 1,1 >0, (61)
0< Z (Tik() = Tix(t)) <2 —t1, Yoo > 11, 11,1220, j=1,2,...,J, (62)
(i.k)ea;

xi k(1) =0, Tir(t) > 0. (63)

The objective function (59) represents the total time that at least one of the fluid
levels is positive, and corresponds to the minimum makespan schedule in the discrete
problem. The only difference from the model of Sect. 2.2 is in Eq. (60), where the
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additional term A; min(z, T*) represents the (fractional) number of external arrivals of
type i jobs up to time ¢.

Similar to the definition for the discrete problem, we define congestion in machine
0j as

Ci= Y piklxi+nT" (64)

(i,k)ea;
and the maximal congestion as

Cmax = max Cj. (65)
1<j=<J

We next show that the fluid relaxation can be solved explicitly.

Proposition 5. The fluid relaxation (59) has an optimal value equal to the maximum
congestion Cpax.

Proof. We first show that the maximum congestion Cpy,yx is a lower bound on the optimal
value of the control problem. For any positive time ¢ and for each i < I, k < J;, we
have from Egs. (60), (61):

k
Y xia() = xi + ki min(t, ) — i Tk (0.
=1
Let¢t < T*, and let j be an index that achieves the minimum in Eq. (57). For machine
0j we obtain:

k
Y kY xa®= > pilxi+amin@ T — > Tk
(ik)eo; =1 (ikyeo; (ikyeo;
> Z Dik(xi + A1) —t (Constraint (62) applied to
(ikyeo; H=0.1=1
= Y pixi—(1—ppt  (byEq. (56))

(i,k)ea;

=1 —p)T" =0 (by the choice of j, and Eq. (57))

It follows then, that the fluid levels at o; are positive for all times # smaller than 7.
Therefore, the objective value of the fluid relaxation is at least 7*, which, by Proposi-
tion 4, equals Cpax.

We now construct a feasible solution that achieves this value. Foreachi < I, k < J;
and each t < Cpax we let

Dik(Xi + A Cmax)t

Tix () = C
max

(xi + 2iCrax) .
— 1,1

max

xi k() =0, k=23,...,J;,i=1,...,L

Xi1 () = x;i + At — i T (1) = x; + At — =1,...,1
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For all t > Cmax we set T; k(1) = pik(xi + AiCmax), Xi k(f) = 0. Clearly, this solution
has an objective value equal to Cpax. We now show that this solution is feasible. It is
nonnegative by construction. Also by construction, Eq. (60) is satisfied for all # < Cpax.
In particular, x; 1 (Cmax) = 0, i = 1,2,..., 1. Moreover, for all i, k = 2,3,..., J;
and t < Cpax We have:

(xi + )\icmax)t _ (xi + i Crax)
Cax Crax

Wik—1Tig—1() — wikTik(t) = t=0=x;(0),

and Eq. (61) is satisfied. Finally, for any #; < f2 < Cpax and for any machine o, we
have:

i i + AiCmax i i + i Cmax
SO (T = Tac) = Y <P,k(x ), _ ikt )t1)

Cm: Cm:
(i,k)ea; (i,k)ea; max max

S 1)
=—(M—1n
Cmax
h —1,

IA

and Constraint (62) is satisfied. Note, that for the constructed solution x; x (Cmax) = 0
foralli < I, k < J;. Therefore the feasibility for times r > Cpyax follows trivially.
O

In the following section we prove that F'SA yields an asymptotically optimal solution
for the original discrete job shop scheduling problem.

3.3. The fluid synchronization algorithm

Recall that the F'SA of Sect. 2.3 relied on the notion of nominal start times. Our plan for
this section is quite simple: we describe an analogous definition of nominal start times
for the model with arrivals, and argue that all of the results of Sect. 2.3 carry over under
this new definition also.

Definitions. The definitions of DS; x(n) and DC; (n) are the same as before. We
now present the definitions of FS; x(n) and NS; x(n). In the following, we let n index
the jobs; the first n; jobs are the ones that are initially present in the network. Jobs
n; +1,...,n; + e; are the type i jobs that arrived from outside in the interval [0, T*].
Let a; (1) be the arrival time of the /" external arrival of type i, forl = 1,2, ... , ¢;.

Fluid Start time (FS; (n)): This is the start time of the nh (i, k) job in the fluid
relaxation, and is given by

FSi k(1) =0, (66)
Cmax

FSix(n) = FSix(n— 1) + ——m%
l ' (n; + 2iCmax)

n> 1. 67)
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Nominal Start time (NS; x (n)): The nominal start time of the nM @i, k) jobis defined

as follows.
NS;1(n) = FS;j1(n), n=12,...,n, (68)
NS; 1(n; +1) :max{FSi’l(nl- +D,a;(D)} 1=1,2,...,¢;, (69)
NSi k(1) = DSik—1() + pig—1, k>1, (70

Cmax

NS; k(n) = max {NS"k(n -1+ —,
l ' (n; + AiCmax)

DS;j—1(n) + Pi,k—l}, n,k>1. (71)

As before, at every scheduling epoch for the discrete network, the FSA schedules
a job with the smallest nominal start time. To prove that FSA yields an asymptotically
optimal schedule, we need to prove analogs of Theorems 1 and 2. Clearly, Theorem 1
remains true in this setting as well. In the proof of Theorem 2, we used NS; 1(n) =
FS; 1(n) for all i, n to establish the basis for the induction; this must be established for
the model under consideration for n; < n < n; + e;. It is easy to see that the proof of
Theorem 2 would follow if we can prove that NS; 1 (n) = FS; 1(n) forall i, n.

Lemma 6. Let FS, (n) and NS, i (n) be defined as in Egs. (66) and (71). Then,
NS;i1(n) = FSi1(n), Y i,n. (72)
Proof. Fix ajob typei. The Lemmais trivially true (by Eq. (68)) for n < n;. To establish
Eq. (72) for n > n;, we only need to show that forany 1 </ <e;,
FSii(ni +1) > ai(l) (73)

Since arrivals are deterministic,

al) = =

» (74)

From Eq. (66),
Cmax

FS; i+ = i +l—-1) —. 75
l,l(nl +1) (n; + ) 77 + 2 Cona (75)
Thus,
FS; i+ C Ai
z,l(”h"‘ ) —i41—1) max i
ai(l) ni +AiCmax [ —1
— 1;CmaxAi + ([ — 1) CraxAi
ni(l —1) + (I — 1)CraxA;
> 1 (because ¢; < A;Cmax + 1).
O

Thus, Theorems 1 and 2 remain true for this model, which in turn imply Theorem 3.
These observations prove the following analog of Theorem 4.
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Theorem 5. Consider a job shop scheduling problem with I job types and J machines
o1, 02, ... ,07. Suppose we are given initially n; jobs of typei = 1,2, ..., I; suppose
also that external arrivals of type i jobs occur deterministically at rate \; over the
horizon [0, T*], where T* is given by Eq. (57). Then, the FSA produces a schedule with
makespan time Cp such that

Ji
* . .
Cmax = €7 = Cp = Crax + i=?,122,1§,1 ;(2 Pg; + Uglt). (76)

In particular,

C C

2P 77

C* Cmax
as

I
Zn,‘ — 00,
i=1
where C* is the optimal makespan.

From Theorem 5, we see that the additive error of the schedule computed by FSA
is bounded from above by Jmax (2 Pmax + Umax). As before, considering a flow shop
establishes that an an additive error of (Jmax — 1) Pmax 1S necessary for any algorithm that
uses the optimal fluid cost for comparison purposes. Improved results for the model of
Sect. 2 will directly result in improvements for the model with arrivals, which makes the
problem of designing algorithms that achieve the optimal additive error both interesting
and important.

4. Computational results

We present in this section computational results based on FSA. In our first experiment,
we consider the famous 10 by 10 instance in Muth and Thompson [19] with n; = N
jobs present and vary N. Table 10 shows the performance of FSA for N ranging from
1 to 1000. This class of instances has Jimax = 10, I = 10 and Ppax = 98. As Theorem
4 predicts the gap between Cp and Cpyax 1S insensitive to N. What is striking is that the
actual gap is substantially smaller than the bound predicted in Eq. (54). While bound
(54) gives an upper bound to the error of 5,000, the actual error has never been higher
than 653. Moreover, the actual gap is even smaller than Jyax Pmax = 980. Finally, note
for N = 100 jobs present for each type, the relative error is less than 1%, while for
N = 1000, the error is less than 0.1%.

We have performed an extensive computational study of all benchmark job shop
instances available as part of the OR library (http://mscmga.ms.ic.ac.uk/info.html). The
results reported in Table 11 are for 82 benchmarks. The number of machines ranged
from 5 to 20, and the number of job types ranged from 5 to 50. For each benchmark,
we report results for N =1, N =2, N =5, N = 10and N = 100, and N = 500. The
lower bound based on the fluid relaxation, Cp,x, 1S shown in the second column, and is
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Table 10. Computational results for the 10 x 10 example

| N | Cmax | Cp | Cp — Cmax | (Cp — Cmax)/Cmax |
1 631 1189 558 0.8843
2 1262 1820 558 0.4421
3 1893 2546 653 0.3450
4 2524 3073 549 0.2175
5 3155 3740 585 0.1854
6 3786 4313 527 0.1392
7 4417 4975 558 0.1263
8 5048 5608 560 0.1109
9 5679 6170 491 0.0865
10 6310 6842 532 0.0843
20 12620 13159 539 0.0427
30 18930 19509 579 0.0306
40 25240 25779 539 0.0214
50 31550 32041 491 0.0156
100 63100 63639 539 0.0085
1000 | 631000 | 631584 584 0.0009

valid for N = 1; the lower bound for N = n is n Cypax. The subsequent columns report
the value of Cp — n Cpax. In the final four columns we report the values of Ppax, Jmax,
the value of the error (54), and the value of (Jimax — 1) Pmax.

We can make the following observations from the results reported in Table 11.

1. The gap between Cp and nCpyx is insensitive to n as predicted by Theorem 4.
Moreover, the actual gap is significantly smaller than the one predicted by the bound
(54) by an order of magnitude.

2. Asymptotic results usually require very large values of n in order for their perform-
ance to be practically useful. This is not the case for FSA. The relative error is about
10% for n = 10, 1% for n = 100, 0.05% for n = 500. Especially if one considers
that the gap is between the performance of FSA and the trivial lower bound Cypax,
the performance of FSA compared to the true optimal value will be even better.

Comparison with dispatch rules.  To further illustrate the effectiveness of FSA, we next

compare its performance to a variety of other simple dispatch rules. Each dispatch rule is

employed in a non-preemptive manner, and essentially identifies the task to be executed

next by a machine, whenever that machine needs to make a scheduling decision. (In the

queueing literature, these are also referred to as “priority rules” or “priority policies.”)
We tested eight common dispatch rules, listed below.

(a) Shortest Task Time (STT): schedule the fask with the smallest processing time.

(b) Longest Task Time (LTT): schedule the fask with the largest processing time.

(c) Shortest Processing Time (SPT): schedule the task with the smallest total processing
time. In other words, a type i job receives priority over a type i’ job if

Ji ‘]i’
Z Dik < Z D' k-
k=1 k=1
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Table 11. Computational results for Job Shop instances in ORLIB

Cmax Cp — NCmax Pmax | Jmax | Error (54) | (/max — 1) Pmax
Benchmark [ (N =1)|N=1|N=2|N=5|N=10|N =100| N =500
abz5 868 599 | 452 | 457 443 567 475 99 10 9725 891
abz6 688 368 | 350 | 412 234 270 256 98 10 7758 882
abz7 556 233 255 | 227 194 43 79 40 15 8506 560
abz8 566 294 | 269 140 131 84 93 40 15 8766 560
abz9 563 366 | 234 135 122 110 102 40 15 8614 560
ft06 43 19 33 21 21 21 21 10 6 305 50
ft10 631 558 | 558 | 585 532 539 545 99 10 6883 891
t20 1119 526 | 477 | 426 341 54 54 99 5 6055 396
la01 666 106 44 85 86 86 86 98 5 3765 392
la02 635 219 98 100 100 100 100 99 5 3579 396
1a03 588 174 115 46 0 0 0 91 5 3225 364
la04 537 158 153 114 100 132 132 98 5 3429 392
1a05 593 17 0 0 0 0 0 97 5 3163 388
1a06 926 0 0 0 0 0 0 98 5 4916 392
1a07 869 219 105 67 67 67 67 97 5 4655 388
1a08 863 117 92 0 0 0 0 98 5 4753 392
1a09 951 67 23 0 0 0 0 99 5 5207 396
lal0 958 48 7 7 7 7 7 97 5 4950 388
lall 1222 50 0 0 0 0 0 98 5 6275 392
lal2 1039 0 0 0 0 0 0 98 5 5606 392
lal3 1150 49 0 0 0 0 0 97 5 6144 388
lal4 1292 0 0 0 0 0 0 97 5 6276 388
lal5 1207 380 | 232 46 44 44 44 99 5 6411 396
lal6 660 520 | 477 | 328 335 277 277 98 10 7151 882
lal7 683 260 | 242 181 259 259 259 98 10 6402 882
lal8 623 421 373 346 262 219 264 97 10 7010 873
lal19 685 298 148 32 34 34 34 97 10 7156 873
1a20 744 528 | 345 175 160 160 160 99 10 7317 891
la21 935 471 432 172 171 160 160 99 10 9900 891
la22 830 482 | 374 | 439 439 439 439 98 10 9176 882
la23 1032 250 49 142 0 0 0 97 10 9951 873
la24 857 331 186 129 129 59 59 99 10 9615 891
la25 864 344 | 408 99 23 29 29 99 10 9389 891
la26 1218 154 | 236 11 0 4 4 99 10 12421 891
1a27 1188 456 | 421 401 280 121 121 99 10 12748 891
la28 1216 258 149 60 157 157 157 99 10 12614 891
la29 1105 473 | 413 | 226 236 215 215 99 10 11831 891
1a30 1355 293 14 0 0 0 0 99 10 12562 891
la31 1784 150 0 0 0 0 0 99 10 17107 891
la32 1850 260 79 0 0 0 0 99 10 18527 891
la33 1719 154 73 66 66 66 66 99 10 16881 891
la34 1721 240 41 0 0 0 0 99 10 17275 891
la35 1888 254 8 8 8 8 8 99 10 17403 891
la36 1028 488 | 393 | 468 388 409 406 99 15 14507 1386
la37 980 881 711 530 330 406 406 99 15 15381 1386
la38 876 590 | 610 | 345 373 99 99 99 15 14083 1386
la39 1012 520 | 497 | 557 604 679 679 99 15 14314 1386
1a40 1027 504 | 346 | 278 233 193 161 99 15 14260 1386
orb01 643 736 | 720 | 720 740 740 740 99 10 7317 891
orb02 671 336 | 322 | 246 271 134 243 99 10 7117 891
orb03 624 781 792 | 829 798 819 819 99 10 7162 891
orb04 759 566 | 447 | 337 337 371 371 98 10 7506 882
orb05 630 525 557 | 397 390 390 390 99 10 6698 891
continued on next page
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continued from previous page
Crmax CD — NCmax Pmax | Jmax | Error (54) | (Jmax — 1) Pmax
Benchmark [ (N =1)|N=1|N=2|N=5|N=10|N =100| N =500
orb06 659 671 731 696 746 746 746 99 10 7476 891
orb07 286 189 162 162 140 132 132 59 10 3305 531
orb08 585 640 | 823 | 763 755 774 725 97 10 6376 873
orb09 661 528 | 492 | 554 448 448 448 99 10 7049 891
orb10 652 651 553 | 415 415 408 408 99 10 7431 891
swv01 1219 935 | 996 | 996 996 996 996 100 | 10 11595 900
swv02 1259 898 | 828 | 828 828 828 828 100 | 10 11945 900
swv03 1178 841 772 | 834 834 834 834 100 | 10 11809 900
swv04 1161 964 | 895 | 842 737 608 645 100 | 10 12192 900
swv05 1235 783 | 782 | 767 767 767 767 100 | 10 11991 900
swv06 1229 | 1290 | 1161 | 1130 | 1103 1067 1067 100 | 15 15111 1400
swv07 1128 | 1111 | 1096 | 1156 | 999 977 977 100 | 15 17472 1400
swv08 1930 | 1174 | 1062 | 983 1009 1091 1091 100 | 15 18679 1400
swv09 1266 | 1232 | 1235 | 1189 | 1189 1189 1127 100 | 15 17790 1400
swv10 1159 | 1147 | 1659 | 1353 | 1370 1286 1286 100 | 15 18599 1400
swvll 2808 | 1619 | 1619 | 1619 | 1619 1619 1619 100 | 10 27383 900
swvl2 2829 | 1854 | 1830 | 1742 | 1602 888 902 100 | 10 27510 900
swvl3 2977 | 1852 | 1774 | 1752 | 1736 1752 1752 100 | 10 27820 900
swvl4 2842 | 1779 | 1684 | 1684 | 1684 1684 1684 100 | 10 26985 900
swvl5 2762 | 1858 | 1931 | 1877 | 1787 898 1013 100 | 10 26959 900
swv1l6 2924 27 54 54 54 54 54 100 | 10 27313 900
swvl7 2794 168 171 146 114 114 114 100 | 10 26411 900
swv18 2852 122 99 108 108 108 108 100 | 10 26641 900
swv19 2843 252 67 0 0 0 0 100 | 10 27581 900
swv20 2823 45 0 0 0 0 0 100 | 10 26585 900
ynl 643 473 | 409 | 287 226 222 232 49 | 20 13660 931
yn2 686 509 | 418 | 357 333 288 318 49 | 20 13652 931
yn3 659 476 | 292 | 392 187 213 215 49 | 20 13475 931
yn4 676 521 563 | 517 430 340 326 49 | 20 14000 931

(d)
(e)

(f)
(€]
(h)

Longest Processing Time (LPT): schedule the fask with the largest total processing
time.

Shortest Remaining Processing Time (SRPT): schedule the fask with the smallest
remaining job processing time. In other words, class (i, [) job receives priority over
@', 0') jobif

Ji J[-/
Z Dik < Z D' k-
k=l

k=I'

Longest Remaining Processing Time (LRPT): schedule the fask with the largest
remaining total processing time.

Last Buffer First Serve (LBFS): schedule the rask with the smallest remaining
number of subsequent tasks.

First Buffer First Serve (FBFS): schedule the task with the largest remaining number
of subsequent tasks.

We chose these dispatch rules primarily because they are easy to implement, and have
roughly the same implementation complexity as our algorithm (FSA). We report the
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results for for the benchmarks swv01-swv10; similar trends are observed for many of
the other benchmark instances.

Tables 12 through 16 display the relative errors of FSA and those of the eight
dispatch rules for various values of N.

Table 12. Comparison of FSA with simple dispatch rules (N = 1)

Cmax W
Benchmark | (N=1) FSA STT LTT SPT LPT SRPT | LRPT | LBFS | FBFS
swv01 1219 0.767 | 0.425 | 0.845 | 0.504 | 0.609 | 0.505 0.631 0.652 0.688
swv02 1259 0.713 | 0.355 | 0.776 | 0.585 | 0.562 | 0.512 0.566 0.495 0.737
swv03 1178 0.714 | 0.563 | 0.683 | 0.677 | 0.658 | 0.650 0.603 0.761 0.637
swv04 1161 0.830 | 0.684 | 0.873 | 0.672 | 0.674 | 0.663 0.697 0.740 0.773
swv05 1235 0.634 | 0.556 | 0.537 | 0.679 | 0.527 | 0.700 0.465 0.588 0.602
swv06 1229 1.050 | 0.684 1.028 | 0.907 | 0.838 | 0.995 0.737 0.849 0.905
swv07 1128 0.985 | 0.692 1.082 1.078 1.010 | 0.978 0.842 1.009 0.859
swv08 1330 0.883 | 0.698 1.027 | 0.750 | 0.725 0.829 0.880 0.836 0.929
swv09 1266 0.973 | 0.790 1.027 | 0.934 | 0.733 0.886 0.673 0.905 0.886
swv10 1159 0.990 | 0.973 1.195 | 0944 | 1.148 1.123 0.884 1.167 1.146

Table 13. Comparison of FSA with simple dispatch rules (N = 10)

Cinax _—

Benchmark | (N =1) FSA STT LTT SPT LPT SRPT | LRPT | LBFS | FBFS
swv01 1219 0.082 | 0.041 | 0.525 | 0.134 | 0.215 | 0.110 0.409 0.184 | 0.504
swv02 1259 0.066 | 0.093 | 0.471 | 0.207 | 0.160 | 0.169 0.346 0.140 | 0.671
swv03 1178 0.071 | 0.129 | 0.520 | 0.291 | 0.283 | 0.285 0.362 0.252 | 0.473
swv04 1161 0.063 | 0.262 | 0.587 | 0.283 | 0.291 0.296 0.411 0.259 | 0.533
swv05 1235 0.062 | 0.130 | 0.443 | 0.308 | 0.154 | 0.216 0.346 0.251 0.501
swv06 1229 0.090 | 0.258 | 0.635 | 0.403 | 0.331 0.234 0.453 0.325 0.599
swv07 1128 0.089 | 0.202 | 0.734 | 0.368 | 0.451 0.345 0.530 0.428 0.653
swv08 1330 0.076 | 0.186 | 0.543 | 0.326 | 0.377 | 0.331 0.455 0.285 0.592
swv09 1266 0.094 | 0.209 | 0.533 | 0.329 | 0319 | 0.291 0.440 0.295 0.648
swv10 1159 0.118 | 0.316 | 0.758 | 0.433 | 0.467 | 0.350 0.690 0.333 0.790

A simple observation is that the shortest task time heuristic dominates all other
dispatch rules that we tried. Moreover, except for the benchmark swv01, FSA is a clear
winner. Even for this benchmark, the error of the schedule produced by FSA appears
to be stable at 996, whereas the STT schedule has an error of 494 (for N large). The
“incremental” benefit of STT over FSA is around 500 time units, which is negligible
for even moderate values of N in this problem: for e.g., if N = 100, the FSA produces
a schedule of length 122896, whereas the STT heuristic produces a schedule of length
122394. In all other cases, the FSA dominates STT (and hence the other heuristics as
well). It is also interesting to observe the “raw-errors” of the heuristics (and FSA) when
compared with the congestion lower-bound. This data is presented for N = 100 in
Table 17.
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Table 14. Comparison of FSA with simple dispatch rules (N = 100)

Cmax 7ZHN*CNCmax
max
Benchmark | (N =1) FSA STT LTT SPT LPT SRPT | LRPT | LBFS | FBFS
swv01 1219 0.008 | 0.004 | 0.563 | 0.110 | 0.186 | 0.065 0.398 0.172 | 0.498
swv02 1259 0.007 | 0.071 0.440 | 0.181 0.117 0.124 0.324 0.090 0.668
swv03 1178 0.007 | 0.092 | 0.493 | 0232 | 0213 | 0.227 0.349 0.189 | 0.453
swv04 1161 0.005 | 0.252 | 0.566 | 0.251 0.280 0.237 0.385 0.222 0.529
swv05 1235 0.006 | 0.090 | 0.417 | 0.249 | 0.127 0.164 0.343 0.179 0.474
swv06 1229 0.009 | 0.181 0.595 0.310 | 0.266 0.237 0.417 0.254 0.561
swv07 1128 0.009 | 0.157 | 0.724 | 0.264 | 0.370 | 0.235 0.466 0.403 0.627
swv08 1330 0.008 | 0.162 | 0.443 0.233 0.231 0.222 0.410 0.225 0.548
swv09 1266 0.009 | 0.167 | 0.486 | 0.212 | 0.203 | 0.231 0.404 0.209 | 0.594
swv10 1159 0.011 0.275 0.779 | 0.328 | 0.353 0.271 0.650 0.347 0.766

Table 15. Comparison of FSA with simple dispatch rules (N = 500)

Cmax 7ZHN*CNCmax
max
Benchmark (N=1) FSA STT LTT SPT LPT SRPT | LRPT | LBFS | FBFS
swv01 1219 0.0016 | 0.001 | 0.561 | 0.108 | 0.180 | 0.064 0.396 0.168 | 0.497
swv02 1259 0.0013 0.068 | 0.437 | 0.178 | 0.110 0.120 0.322 0.043 0.668
swv03 1178 0.0014 | 0.089 | 0.489 | 0225 | 0.207 | 0.222 0.349 0.187 | 0.450
swv04 1161 0.0011 0.251 0.561 0.242 | 0.273 0.259 0.383 0.271 0.528
swv05 1235 0.0012 | 0.087 | 0.418 | 0.243 | 0.123 0.156 0.343 0.178 0.471
swv06 1229 0.0017 0.172 | 0.593 0.303 | 0.261 0.265 0.416 0.274 0.558
swv07 1128 0.0017 | 0.156 | 0.653 | 0.249 | 0.371 0.231 0.468 0.386 | 0.623
swv08 1330 0.0016 | 0.160 | 0.400 | 0.229 | 0.217 0.182 0.408 0.231 0.544
swv09 1266 0.0018 | 0.156 | 0.509 | 0.202 | 0.188 | 0.253 0.401 0.201 0.592
swv10 1159 0.0022 | 0.267 | 0.692 | 0.319 | 0.341 0.232 0.645 0.328 0.763

Table 16. Comparison of FSA with simple dispatch rules (N = 1000)

Cmax ZI{I\:C‘M
max
Benchmark | (N=1) FSA STT LTT SPT LPT SRPT | LRPT | LBFS | FBFS
swv01 1219 0.0008 | 0.000 | 0.560 | 0.108 | 0.179 | 0.064 0.396 0.167 | 0.497
swv02 1259 0.0007 | 0.067 | 0.437 | 0.178 | 0.110 | 0.120 0.322 0.040 | 0.668
swv03 1178 0.0007 | 0.089 | 0.489 | 0224 | 0.206 | 0.222 0.349 0.210 | 0.450
swv04 1161 0.0006 | 0.251 | 0.560 | 0.241 | 0.272 | 0.226 0.382 0.268 | 0.528
swv05 1235 0.0006 | 0.086 | 0.418 | 0243 | 0.123 | 0.155 0.343 0.179 | 0.471
swv06 1229 0.0009 | 0.171 | 0.658 | 0.302 | 0.260 | 0.264 0.416 0.276 | 0.558
swv07 1128 0.0009 | 0.155 | 0.669 | 0.248 | 0.371 0.230 0.468 0.393 0.623
swv08 1330 0.0008 | 0.160 | 0.399 | 0.229 | 0.216 | 0.237 0.408 0.231 0.543
swv09 1266 0.0009 | 0.156 | 0.497 | 0.201 | 0.189 | 0.218 0.401 0.201 0.592
swv10 1159 0.0011 | 0.266 | 0.693 | 0.318 | 0.339 | 0.231 0.645 0.307 | 0.763

An important conclusion that emerges from the computational experiments is that
none of the dispatch rules we considered appears to be asymptotically optimal. In fact,
for each of these dispatch rules, it is fairly easy to construct examples that have strictly
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Table 17. Errors of FSA & other simple dispatch rules (N = 100)

Error (Zg — NCmax)

Benchmark | FSA STT LTT SPT LPT SRPT | LRPT | LBFS FBFS
swv0l 996 494 68636 13366 | 22646 7966 48460 | 20982 | 60692
swv02 828 8961 55418 | 22802 14713 15645 | 40783 11279 | 84089
swv03 834 10883 | 58129 | 27281 25091 26702 | 41164 | 22314 | 53338
swv04 608 29285 | 65754 | 29159 | 32525 | 27556 | 44738 | 25801 61374
swv05 767 11096 | 51536 | 30693 15638 | 20244 | 42345 | 22071 58553
swv06 1067 | 22247 | 73126 | 38101 32652 | 29145 | 51278 | 31200 | 68922
swv07 977 17741 81718 | 29769 | 41784 | 26486 | 52561 45412 | 70717
swv08 1091 21542 | 58945 | 31006 | 30692 | 29542 | 54542 | 29886 | 72862
swv09 1189 | 21149 | 61579 | 26808 | 25709 | 29257 | 51206 | 26451 75153
swv10 1286 | 31918 | 90325 | 37967 | 40856 | 31396 | 75303 | 40251 88744

positive relative error. As an illustration, consider the STT rule. Suppose there are two
machines and two types of jobs: type 1 jobs need 1 unit on machine 1; type 2 jobs need
2 units on machine 1, and 3 units on machine 2. If we have n = 3k jobs of each type
initially, the STT heuristic has a makespan of 12k + 2, whereas the congestion bound
is 9k. Our computational results suggest that each of the dispatch rules encounter such
difficulties in these benchmarks, and so do not compute good schedules. In contrast, the
FSA finds high-quality schedules consistently.

Comparison with the shifting bottleneck heuristic. The shifting bottleneck heuris-
tic [13] is one of the most successful heuristic procedures for minimizing makespan
in the job shop problem. This heuristic sequences the machines one by one. In each
step, a “bottleneck” machine is identified among the machines not yet sequenced; this
bottleneck machine is then sequenced, and each of the previously sequenced machines
is now resequenced. The bottleneck identification and the re-sequencing are both solved
as single machine scheduling problems. We refer the reader to the original paper [13]
for additional details.

We present results on three problem instances. The first is a 6-machine problem
with 6 job types (ft06) and is part of the OR library. This is the only instance in the
OR library for which the shifting bottleneck heuristic terminated in reasonable time for
N = 20. The results are presented in Table 18. The second column of the table presents
a lower bound (LB), which is the best lower bound we could compute in reasonable
time; this is often better than the trivial (fluid/congestion) lower bound. The third and
the fourth columns indicate the makespan of the shifting bottleneck and fluid-based

Table 18. Computational results for the 6 x 6 example ft06

| N | LB | ZsBH | ZFsA |

1 59 59 62
2 92 96 119
5 | 221 221 236
10 | 436 436 451
20 | 866 866 881
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schedules respectively. We see that the shifting bottleneck heuristic finds the optimal
solution in most cases; the fluid-based heuristic has a small, but positive, error always.

Our second and third experiments are on instances with 10 machines and 5 job
types. These instances were chosen by (randomly) excluding some of the job types
from the instances abz5 and abz6 respectively; the exclusion was necessary to enable
us to get results at least for N = 10. (These instances are available from the authors.)
Still, (our implementation of) the shifting bottleneck heuristic ran out of stack space on
the second of these instances. The results are summarized in Tables 19 and 20. Once
again, we see that the shifting bottleneck heuristic performs remarkably well in each of
these instances. This performance, however, comes at the cost of a prohibitive running
time. For example, the heuristic was not able to solve larger instances in reasonable
time (hours). Moreover, for problems with 100 jobs on 10 machines, the running time is
almost always too large. Presumably, the shifting bottleneck heuristic could be modified
to take advantage of the “high-multiplicity” nature of the job-mix. (For instance, we
know now that there exists schedules of length 9506 for N = 20 in Table 19; and
schedules of length 4008 and 8016 for N = 10 and N = 20 in Table 20. The shifting
bottleneck heuristic was perhaps trying to find better schedules.)

Our final instance is a 15-machine problem with 5 job types. The results, shown
in Table 21, are very similar. For the cases in which the shifting bottleneck heuristic
completes, it does better than the fluid-based heuristic. But even for moderate values

Table 19. Computational results for a 5 x 10 example

| N | LB | Zsgu | Zrsa |

1 959 997 1061
2 1243 1315 1532
5 | 2418 | 2532 2701
10 | 4662 | 4753 4932
20 | 9232 - 9536

Table 20. Computational results for a 5 x 10 example

[ N[ LB | Zsgn | Zrsa |

1 752 752 906
2 939 1028 1128
5 1990 | 2004 2199
10 | 3980 - 4193
20 | 7960 - 8173

Table 21. Computational results for a 5 x 15 example

| N | LB | ZsBH | ZFsA |
1 376 393 452
2 479 511 604
5 857 918 970
10 1487 - 1725
20 | 2841 - 3019
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of N, the shifting bottleneck heuristic quickly becomes impractical. In this instance,
a simple repetition of the shifting bottleneck schedule for N = 5 gives a schedule of
length 1836 for N = 10, and 3672 for N = 20; each of these schedules is longer than
the fluid-based schedule.

Our experiments show that FSA is competitive although slightly worse than the
shifting bottleneck heuristic, whenever such a comparison is possible. However, even
for moderate values of N (larger than 10), the running time of the shifting bottleneck
heuristic is prohibitive (hours-days), whereas the fluid-based heuristic solves each of
these instances in a few seconds.

Summary. Based on our computational results, we conclude that the FSA represents
a practical algorithm for solving job shop scheduling problems of even moderate
multiplicity. Every one of the instances in Table 11 was solved in under five seconds
on a Ultra 10 Sun workstation. In addition, the quality of the solution obtained is
exceptionally good even for moderate-sized problems.

5. Conclusions

The major insights from our analysis are:

1. Given that the fluid relaxation ignores all the combinatorial details of the problem,
our results imply that as the number of jobs increases, the combinatorial structure
of the problem is increasingly less important, and as a result, a fluid approximation
of the problem becomes increasingly exact.

2. FSA is attractive from a practical perspective. First, it is simple to implement,
and has modest memory requirements. Second, its performance on all problems in
the OR library shows that it leads to high quality solutions even for problems of
moderate multiplicity. Third, it outperforms different dispatch rules of comparable
running times. Given that especially in a manufacturing environment, jobs do have
multiplicity, FSA should be considered a candidate for practical application.

An interesting open problem is to find the tightest upper bound on the error given in
(54). Given a worst case example with additive gap (Jmax — 1) Pmax, it is tempting to con-
jecture that the answer might be (Jimax — 1) Pmax; we refer the reader to Sevast’janov [25]
for related conjectures and open problems.
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